Inversion of multiwavelength Raman lidar data for
retrieval of bimodal aerosol size distribution
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We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions
from Mie—Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter
coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion
method employed is Tikhonov’s inversion with regularization. Special attention has been paid to extend
the particle size range for which this inversion scheme works to ~10 pm, which makes this algorithm
applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simu-
lations showed that surface area, volume concentration, and effective radius are derived to an accuracy
of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an
effective radius of <1 pm the real part of the complex refractive index was retrieved to an accuracy of
+0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-
dependent complex refractive index showed that an average complex refractive index is derived that lies
between the values for the two individual modes. Thus it becomes possible to investigate external
mixtures of particle size distributions, which, for example, might be present along continental rims along
which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the
Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean
Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark
test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A
strong contribution of particle volume in the coarse mode of the particle size distribution was found.
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1. Introduction

Aerosols are one of the key atmospheric constituents
that influence the Earth’s radiation budget and re-
quire a detailed characterization of optical and phys-
ical properties to reduce wuncertainties in the
modeling of the planet’s radiative forcing.! Because
of the highly variable lifetime of tropospheric aerosols
of the order of days to weeks,? their inhomogeneous
spatial distribution over the globe, as well as different
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source and transport paths, continuous monitoring is
demanded. Satellite-based aerosol remote sensing
provides for global coverage. Ground-based aerosol
remote sensing is best suited for reliable and contin-
uous monitoring of aerosol properties in key loca-
tions. Aerosol sounding with multiwavelength lidar
in recent years has emerged as a powerful tool that is
capable of providing comprehensive, quantitative in-
formation of aerosol properties on a vertically re-
solved scale.34

Techniques for the retrieval of microphysical par-
ticle parameters from multiwavelength lidar, devel-
oped since the early 1980s,>-7 have made major
progress in the past 5 years.8-12 In that respect the
most successful technique has been developed at the
Institute for Tropospheric Research (ITR), Leipzig,
Germany. It was developed initially for the re-
trieval of aerosol size distribution parameters and
complex refractive indices from a multiwavelength
Mie-Raman lidar that provides backscatter coeffi-
cients at six wavelengths and extinction coefficients
at two wavelengths.13 In recent years this tech-



nique has been further refined to make it usable for
the limited data set of backscatter coefficients at
three wavelengths and extinction coefficients at two
wavelengths,11.14 which, in principle, can be provided
by a multitude of aerosol lidar systems operated
throughout the world. These laser systems are
based on a single Nd:YAG laser that is the most
popular choice for investigation of aerosol particles.
Although with a somewhat lower accuracy it has now
become possible to derive the single-scattering albedo
from the limited data set of such aerosol lidars. This
quantity is one of the most important input parame-
ters in the assessment of the influence of absorbing
aerosols on climate change.

The necessity for long-term global monitoring of
aerosol properties dictates the establishment of lidar
networks. The first attempt at such a network was
done with the Asian Dust Lidar Network (Murayama
et al., 2001),'5 which has been observing dust out-
breaks from the Asian continents since 1997. From
1997 to 2000 the German Lidar Network!¢ for the
first time established an aerosol climatology over
Germany on the basis of lidar observations. In 2000
the highly successful European Aerosol Research Li-
dar Network (EARLINET) became operational.l?
During the intensive period of this project from 2000
to 2003, 22 lidar stations in 13 European countries
performed routine observations of aerosol properties.
Quite obviously the enormous data set obtained from
such networks would make them a prime candidate
for detailed characterization of the physical particle
properties. This idea has become more realistic
since the inversion techniques that were originally
designed to process the ITR six-wavelength aerosol
lidar have been tuned to the processing of particle
backscatter coefficients at three wavelengths and
particle extinction coefficients at two wavelengths
(3B + 2a data set). In principle, many of the lidar
stations in EARLINET can provide for this reduced
data set, because the lidar systems use a Nd:YAG
laser as the light source.

In a recent publication'! Veselovskii et al. de-
scribed a modified version of Tikhonov’s inversion!8
with constraints used for the retrieval of particle size
distributions. In contrast to the classical Tikhonov’s
method, which accepts only that solution for which
the discrepancy reaches its global minimum, in our
algorithm we perform the averaging of solutions in
the vicinity of this minimum. This averaging stabi-
lizes the underlying ill-posed inverse problem. The
classical Tikhonov method also demands a priori
knowledge of optical data errors for the estimation of
the stabilizing penalty term. Our use of the modi-
fied discrepancy eliminates the necessity for such in-
formation. The comparison of results obtained from
3B + 2a data sets with simultaneous aircraft in situ
measurements showed reasonably good agreement,?
thus demonstrating the potential of using simplified
multiwavelength Raman lidars in lidar networks.

The developed algorithm does not use any a priori
assumption about the exact shape of the particle size
distributions. In previous studies it has, however,

been applied only to monomodal logarithmic-normal
particle size distributions. Particle size distribu-
tions normally consist of two modes in an optically
active size range, denoted as the fine mode and the
coarse mode. Extreme cases could occur along con-
tinental rims where marine and anthropogenic par-
ticles mix. Dust events could lead to the transport of
large mineral particles into anthropogenically pol-
luted areas. Hygroscopic growth could lead to com-
parably large particles.

Only a few studies up to now considered the re-
trieval of bimodal particle size distributions from li-
dar observations.®12 Studies were designed to
determine the degree of separation of the two modes
until the inversion breaks down.® Polynomials of
high order were used to detect multimodal size dis-
tributions.2

The task of resolving structures that consist of
coarse mode particles of ~10-pwm radius is made more
difficult by the fact that the longest wavelength avail-
able in routinely used lidars is 1.064 pm, and the fact
that the corresponding kernel functions are not sen-
sitive to size variations of such big particles. In our
study we tried to answer the questions of whether the
coarse mode of particle size distributions can be es-
timated from lidars based on one Nd:YAG laser and
what uncertainties have to be expected.

In Section 2 we briefly describe the inversion algo-
rithm. In Section 3 we present results from numer-
ical simulations. We present measurement
examples in Section 4 and conclude with a summary
in Section 5.

2. Methodology

A. Inversion Code

Optical coefficients g; of particles of spherical shape
can be calculated as

dn(r)
dr

gi =f K;(m, r, \) dr, i=1,...,Ny (D

0

The quantity g; summarizes the particle backscatter
[B(\)] and particle extinction [a(N)] coefficients, with
N, being the number of available optical coefficients
(o and B). The term dn(r)/dr denotes the number
concentration distribution. The expression \ de-
scribes the wavelength; m = mg — im; is the complex
refractive index, with my being the real part and m;
being the imaginary part; r is the particle radius; and
K;(m, r, \) are the kernel functions that are calcu-
lated from Mie theory for spherical particles. The
size distribution in Eq. (1) can also be written in
terms of surface-area ds(r)/dr or volume dv(r)/dr con-
centration. The corresponding kernel functions are
obtained by dividing K;(m, r, \) by 4wr? and (4/3)mr®,
respectively, thus giving K;g = K;/4mr® and K;,, =
3/4(K;/nr®). The volume kernel functions are usu-
ally used in the retrieval procedure.5:6:8

In a previous study!! Veselovskii et al. did not find
any significant influence of the kernel type on the
retrieval results. In this study we repeated the sen-
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Fig. 1. Dependence of (a) aerosol extinction and (b) backscatter
coefficients on particle size for wavelengths of 355, 532, and 1064
nm and refractive indices m = 1.35 — i0 (solid line) and m = 1.35 —
10.02 (dots). Coefficients o and B were obtained by integrating the
Mie efficiencies over single-mode log-normal size distribution of
width Ino = 0.1. The results are normalized to the particle total
volume V,. The inset in (b) shows the behavior of B(\) for m =
1.35 — .02 in the radius range from 1 to 10 pm.

sitivity analysis with regard to the kernel functions
as the size range for the inversion was extended to-
ward larger sizes of 20 pm. Moreover, besides the
traditionally used kernels, kernel functions of even
higher order were constructed. These high-order
kernels are calculated as

K, K, K,

Ki4=F, Ki5=F... —r.

The retrieved particle size distributions have no sim-
ple physical interpretation, but dn(r)/dlnr, ds(r)/
dlnr, and dov(r)/dlnr can be recalculated from them.
The improvement in retrieval stability, which we can
expect by changing number concentration kernels to
surface, volume, or higher-order kernels, is related to
the decrease of the contribution of big particles to
backscattering. Figure 1 shows that the backscatter
efficiency at different wavelengths from particles
with » > 3 pm becomes comparably large, thus mak-
ing the retrieval unstable. In the retrieval we inte-
grate the kernel functions across the base functions,?
which are wide enough to pick up the insensitive part
of the kernels, corresponding to big radii. Dividing
the kernels by * decreases the contribution of the big
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particle radii, but at the same time raises the insen-
sitive part of kernels at small particle radii. Hence
we can expect that kernels of higher order will be
better for the coarse mode estimation, even though
they become less suitable for reproduction of the fine
mode.

To solve the Fredholm integral equation (1) we use
the same regularization approach as was done in a
previous paper.!! We briefly summarize the main
steps. The solution f(r) of Eq. (1), [dn(r)/dr, ds(r)/dr
or dv(r)/dr], is approximated by the superposition of
base functions B;(r):

f(r)= E Cij(r)dr, (2)

where C; are so-called weight coefficients. The base
functions have a triangular shape on an equidistant
or a logarithmic-equidistant grid across the chosen
radius interval in which the inversion is performed.
The base functions are located next to each other and
thus define a so-called inversion window [7,;,,, "max)-
The approximate values of the optical coefficients are
then

Nipf

gia = E Aijcja (3)
J=1

where N, is the number of base functions and A;; is
calculated as

A= fm K.(m, \, r)B;(r)dr, (4)

"min

where A;; describes the so-called weight matrix.
Representing C; and g; as vectors, the weight coeffi-
cients can be derived from the following relation®:

C = (ATA + vyH) 'A”g", (5)

The expression vy denotes the Lagrange multiplier,
and H is the smoothing matrix. A7 is the transpose
of matrix A. The details for deriving Eq. (5) and the
choice of Lagrange multiplier can be found in Refs. 8
and 11. In the previous version of our code the num-
ber of base functions NV, coincided with the number of
optical coefficients N, ;. In this version the code was
modified to allow for a larger number of base func-
tions than available data points. Because of the in-
troduction of AT into Eq. (5) the resulting matrices
remain quadratic.

One of the problems that arise when dealing with
large particles is the rapidly increasing computation
time. In our first version of the program the kernels
K;(m, r, \) and matrix elements A;; were recalculated
for each inversion step. In the present version a
data bank of Mie efficiencies was generated. The
Mie efficiencies were calculated for particle radii from
0.01 to 20 pm in steps 0of 0.001 pum. The real part of
the refractive index varied from 1.25 to 1.75 in steps
of 0.025. The imaginary part varied from 0 to 0.05
in steps of 0.005. The use of this data bank strongly
speeded up the computation times. The inversion of



Table 1. Typical Parameters of Bimodal Distribution of Different Types

of Aerosol*
Aerosol Urban Biomass Desert Dust
Parameter Industrial Burning and Oceanic
r/ (um) 0.14-0.18 0.13-0.16 0.12-0.16
r (pm) 2.7-3.2 3.2-3.7 1.9-2.7
In of 0.38-0.46 0.4-0.47 0.4-0.53
In o, 0.6-0.8 0.7-0.8 0.6-0.7
V,/V. 0.8-2.0 1.3-2.5 0.1-0.5
mg 1.4-1.47 1.47-1.52 1.36-1.56
my 0.003-0.015 0.01-0.02 0.0015-0.003

“r/” describes the volume radius in the fine mode of the particle
size distribution; r.” is the volume radius in the coarse mode; Ino,
and Ino, are the mode widths for the fine and coarse modes, re-
spectively; V,/V, describes the ratio of volume in the fine and the
coarse particle modes; my and m; denote the real and the imagi-
nary parts of the complex refractive index.

one data set with consideration of 4000 inversion
windows takes approximately 20 min on a Pentium
III PC but is still insufficient for routine lidar data
processing. To speed the computations further, for
the chosen kernel functions and number of base func-
tions N, we generated the data bank of matrix ele-
ments A;; according to Eq. (4). With the use of this
data bank the inversion of one optical data set takes
approximately 3 min.

B. Size Distributions

In the following simulations we used bimodal particle
size distributions of the form

dn(r) N, ~(nr—In r?
d In(r) _Ef (2m)"In o, eXp[ 2(In 0,)? ] ©

The term N, is the total particle number of the ith
mode, ;" describes the mode radius for number con-
centration distribution, and Ino; is the mode width of
the ith mode. The index i = f, ¢ corresponds to the
fine mode and the coarse mode, respectively. The
same distribution can be written for volume v(r) con-
centration, which is preferred, because in volume
concentration representation both fine and coarse
modes are relatively easy to distinguish. Both
dn(r)/d Inr and dv(r)/d Inr have the same standard
deviation o and the relationships between radius and
concentration for each mode are2°

r’=r"exp[3(n )], (7
Vi=Ny % "‘T(rin)3 eXp|:§ (In 0')2:| . (8)

For the simulation of bimodal size distributions
different types of aerosol associated with different
emission sources and mechanisms and optical prop-
erties have to be considered. Usually four main
types of aerosol in the troposphere can be distin-
guished: wurban industrial aerosol, biomass burning
aerosol, desert dust, and marine origin aerosol. Ta-
ble 1 shows the typical variability of the aerosol pa-
rameters for these aerosol types on the basis of

measurements with the worldwide Aerosol Robotic
Network (AERONET).21  Although the particle size
distributions are not always bimodal for each mea-
surement situation, as suggested by the numbers in
Table 1, this parameter set represents a realistic ap-
proach to constraining the parameters for the simu-
lations presented here.

The radii of the fine mode and the coarse mode as
well as the refractive indices vary strongly within
each aerosol type. The variation between the differ-
ent types of aerosol is similarly strong. The main
difference between the aerosol types is the ratio of the
volume of the fine mode to the coarse mode. For
urban industrial and biomass burning aerosols the
fine fraction prevails for dust and marine aerosols the
volume of the coarse mode by far exceeds the volume
of the fine mode. Examples for particle parameters
used in climatology calculations are presented in Ref.
22. An extensive literature on particle properties,
mostly derived from in situ observations, can also be
found in special issues on the Tropospheric Aerosol
Radiative Forcing Observational Experiment,23.24 the
Aerosol Characterization Experiment (ACE) 2,25 the
Indian Ocean Experiment (INDOEX),26 the Asian Pa-
cific Regional Aerosol Characterization Experi-
ment,2? and the Lindenberg Aerosol Characterization
Experiment.28

Although the particle size distributions for Asian
dust and marine aerosols are similar, there is an
important difference: marine aerosols can be con-
sidered spherical under most situations such as the
high relative humidity that generally prevails over
water, whereas dust particles are irregular in shape.
In our study we consider only spherical particles, and
the possibility to extend the results obtained here to
nonspherical particles is beyond the scope of this pa-
per.

Based on the results presented in Ref. 22, we con-
sider two types of particle size distribution, denoted
as type I and type II. Type I has the following pa-
rameters: r/ = 0.15 pm, Ino,= 0.4, 7" = 2.7 pm,
In 0, = 0.6, and V,;/V,, = 2. In that case the fine
mode is dominant. This distribution describes in-
dustrial and biomass burning aerosols. Type II has
the same parameters except for V,,/V,. = 0.2, which
means that the main part of the aerosol volume is
presented by the coarse mode. This distribution de-
scribes marine aerosols. The refractive index was
assumed to be mainly m = 1.45 — 10.015 for both
modes. We also present results for other complex
refractive indices and the important case in which
the refractive indices of the fine and coarse modes
differ.

In the current study we pursued several goals.
We performed numerical simulations to determine
how the stability of the inversion depends on errors in
the optical data, on the type of kernel functions, on
the number of optical data and base functions, and
how the averaging procedure works for the bimodal
particle size distribution. We also considered the
situation in which fine and coarse aerosol modes have
different refractive indices. The simulations were
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performed mainly for the data set of 38 and 2«, be-
cause we intend to demonstrate that this simplified
version of lidar can be used to estimate the parame-
ters of the particle size distribution with the accuracy
superior to within the range of natural variation of
aerosol parameters listed in Table 1.

3. Numerical Simulations

A. Analysis of Optical Spectra

To estimate the maximum particle radii that can be
retrieved from measurements with a triple Nd:YAG
laser we first investigated volume backscatter and
extinction coefficients at 355-, 532-, and 1064-nm
wavelengths as a function of particle size. Figure 1
shows the results of the calculation for the complex
refractive index m = 1.35 — i0. Short-term oscilla-
tions of the corresponding Mie efficiencies are not
relevant for the following discussion. These oscilla-
tions were smoothed by integrating them over mono-
modal logarithmic-normal size distributions of mode
radius r, and mode width Ino = 0.1.  The coefficients
a,, B, obtained in this way were normalized to the
particles’ total volume V, by use of Egs. (7) and (8).
The backscatter coefficients Bs39, B1064 beCcOme prac-
tically indistinguishable for ry > 3 pm, which thus
represents the upper limit of the resolvable particle
radius range. Similar results were found by Heint-
zenberg et al.? and Donovan et al.29

The size distributions listed in Table 1 have their
maximum value of dv/dr in the coarse mode at r, ~
2 wm, hence the coarse fraction of the particle size
distribution contributes differently at 355 and 1064
nm. Calculations performed for type I aerosols with
m = 1.45 — 10.015 demonstrate that the contribution
to total backscatter is 18% at 1064-nm and 2.5% at
355-nm wavelengths. The method should fail when
the contribution of the coarse mode to total scattering
at 1064 nm becomes comparable with the measure-
ment error of the optical data, which can be kept as
low as 10% for Raman lidar. For the chosen distri-
bution it corresponds to a ratio of V,;/V,. ~ 4. Ex-
tinction coefficients at 355- and 532-nm wavelengths
differ strongly for small radii, allowing us to distin-
guish particle sizes as small as 0.05-pm radius.

The inverse problem defined by Eq. (1) is especially
difficult to solve because of the high sensitivity of the
particle scattering properties with respect to the com-
plex refractive index. The dotted curves in Fig. 1
show the same coefficients calculated for m = 1.35 —
1.02. An increase of the imaginary part of the re-
fractive index does not noticeably change extinction
for r > 0.1 pwm, but only for » < 0.1 pm. In contrast,
for backscattering the rise of m; decreases B for big
radii. It is interesting that backscatter, although
weaker for larger m;, is distinct for different wave-
lengths almost up to 10 pm, thus allowing retrieval to
larger radii. Figure 2 shows 8/V, and o/V, at A =
1064 as a function of particle size for different values
of mp. Changing my from 1.35 to 1.5 enhances the
maximum of 3/V, by a factor of 3. On the one hand
the high sensitivity of B with regard to variations of
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Fig. 2. Dependence of particle backscatter (solid) and particle
extinction (dot) coefficients at N = 1064 nm on particle radius for
m =135—-i0,m = 1.45 — i0,and m = 1.5 — i0. The results are
normalized to the total volume V, of the particles.

mg and m; provides a good basis for the retrieval of
the complex refractive index from the lidar data. On
the other hand it represents one source of the insta-
bility of the algorithm. In contrast with the back-
scatter coefficients the extinction coefficients do not
depend that much on myp and remain rather un-
changed with respect to variations of m;. The com-
bination of o« and B, as was shown previously,?1!
allows us to reach a compromise, i.e., the procedure
remains rather stable and retrieval of the complex
refractive index is still possible.

Variation of the scattering properties becomes
more complicated for the bimodal size distribution.
Figure 3 shows the dependence of « and 3 on my at
N = 355, 532, and 1064 nm for type II aerosol with
N, = 10° em 3. The backscatter coefficient at 1064
nm can be higher or lower than the one at 532 nm
depending on my, whereas the extinction coefficients
at 355 and 532 nm change monotonically. Hence
the combination of a and B should also stabilize re-
trieval in the case of bimodal size distributions.
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Fig. 3. Dependence of particle backscatter and particle extinction
coefficients at 355-, 532-, 1064-nm wavelengths on the real part of
the refractive index for type II aerosol. The imaginary part of
refractive index m; = 0.
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Fig. 4. Retrieval of volume size distribution for (a) type I and (b)
type II aerosols. Simulations were performed for 38 + 2« (dash,
dot) and 6B + 2a (dash—dot) data sets using volume kernel func-
tions. Refractive indices m = 1.45 — {0.015 (dash, dash—dot) and
m = 1.65 — i0.015 (dot) were assumed unknown. Optical data
were free of errors. Solid line represents the initial bimodal par-
ticle size distribution.

B. Inversion

1. Error-Free Data

The first test consisted of retrieval of the initial bi-
modal particle size distribution in the absence of op-
tical data errors. Figure 4 shows the inversion
results for 38 + 2a and 6B + 2a data sets for type I
and type II aerosols, respectively. The refractive in-
dices were m = 1.45 —10.015 and m = 1.65 — i0.015
for each case considered here. Volume kernel func-
tions were used, and the solutions were averaged in
the vicinity of the discrepancy minima; the criterion
of choosing the averaging interval will be discussed
below.

It is interesting to note that the parameters re-
trieved from the 68 + 2« data set do not provide an
accuracy superior to the results obtained from the
inversion of the 38 + 2« data set. The use of addi-
tional backscatter coefficients inside the spectral in-
terval from 0.355 to 1.064 pm does not improve the
reproduction of the particle coarse mode. An im-
provement can be achieved only with the use of longer
wavelengths. Unfortunately the calculation of B
from lidar data with an accuracy of 10% in the infra-
red wavelength range meets significant difficulties.
Moreover, for such wide spectral ranges the wave-
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Fig. 5. Volume size distribution for known (dot) and unknown
(dash, dash—dot) refractive index m = 1.45 — 70.015. Simula-
tions were performed for 38 + 2« (dash) and 6B + 2« (dot, dash—
dot) data sets using volume kernel functions. Optical data were
free of errors. The solid line represents the initial bimodal par-
ticle size distribution. Results obtained with known m for the
3B + 2a data set are close to the results obtained with the 68 + 2«
data set.

length dependence of the particle refractive index
must be taken into account.

The retrieval of type II particle size distributions is
more stable, because the coarse mode contributes
70% to the total backscatter coefficient at A = 1064
nm for m = 1.45 — {0.015. The retrieved particle
size distribution almost coincides with the initial one
for both values of the refractive indices. For type I
particle size distributions the reproduction of the
coarse mode is poor (its contribution to total back-
scatter is only 18% for the same wavelength and re-
fractive index), but the contribution of particles in
that mode to total volume is low, so it does not lead to
serious errors in the parameter estimation.

Figure 5 shows the more difficult situation when
fine and coarse modes of the particle size distribution
are comparable. This distribution is obtained from
type II by keeping the same coarse mode and increas-
ing radius and dispersion of the fine mode to r/” =
0.41 pm and Ino, = 0.65, respectively. In this case
the contribution of the coarse mode to total backscat-
ter at 1064 nm is 28%.

When refractive index m = 1.45 — i0.015 is as-
sumed known, the initial particle size distribution is
well reproduced from both 38 + 2« and 68 + 2« data
sets. But for unknown m the uncertainty of the re-
trieved coarse mode is enhanced. The errors of es-
timation N,, S,, V,, and rg for 3g + 2a (68 + 2a) sets
are, respectively, 30% (37%), 3% (8%), 9% (16%), and
11% (7%).

2. Averaging of Solutions

Errors in the optical data create instabilities in the
inversion. The additional stabilization of the proce-
dure is achieved by averaging solutions near the min-
imum of the discrepancy p,;,.'* In a previous
paper!! Veselovskii et al. demonstrated that the un-
certainty of the retrieved parameters for monomodal
particle size distributions does not depend signifi-
cantly on the choice of averaging interval [p, i, Pmax)-
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Fig. 6. Errors of estimation of number (V,), surface (S,), volume
(V,) concentration, particle effective radius r.g, and averaged dis-
crepancy p*’® as a function of averaging interval p, ... For the
inversion of the 33 + 2« data set the (a) volume and (b) surface
area kernel functions were used. The error of the optical data is
10%. The dashed line represents the chosen interval of averag-
ing.

Usually averaging is performed over the interval in
which 10% of the solutions are concentrated. For
bimodal particle size distributions with their large
particle radii the correct choice of averaging interval
becomes more critical. Therefore we improved the
criterion for determining p,,,, according to the dis-
crepancy of averaged solutions p®'®, determined as

1

pave = E

Nopt i

g — 8"
8i

The term g; again denotes the measured optical co-
efficients, and g;**® are the coefficients calculated
from the solutions averaged in the interval [p,;,,
Pmax]-

Figure 6 illustrates the choice of the averaging in-
terval based on the use of the averaged discrepancy
p*e.  Shown are N, S,, V,, ros, and p*© as functions
of the averaging interval p,... The calculations
were performed for type II aerosols with m = 1.45 —
10.01 and using surface and volume kernel functions.
The error of the 3B + 2a data set was 10%. On the

basis of results from numerous simulations we con-
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Fig. 7. Real (squares) and imaginary (circles) parts of the complex
refractive index calculated with volume (filled symbols) and sur-
face area (open symbols) kernels as a function of averaging interval
Pmax- The data set is the same as in Fig. 6. The initial refractive
indexism = 1.45 — {0.01. The dashed line represents the chosen
interval of averaging.

clude that the best parameter estimation is achieved
for that averaging interval for which the averaged
discrepancy p*'® becomes stable (it may oscillate
around some constant level) and averaging is stopped
before the discrepancy p®'® starts to rise.

Figure 6(a) shows the dependence of p?¥¢ on p,,,, On
the basis of the volume kernel functions. There is a
fast rise of p™® for p,,. > 14%, so we chose this value
as the averaging interval. After averaging thereis a
significant decrease of the estimation uncertainty.
For effective radius the error decreases from 105% to
27%, and for volume concentration the error de-
creases from 80% to 16%. Number and surface-area
concentration are less affected by the averaging in-
terval in the present case. Simulations with other
data sets however also demonstrated a strong depen-
dence on p,,,, in some cases. Although the uncer-
tainty for the different parameters may become a
minimum for different values of p,,,, the averaging
interval chosen in this way in general presents a
reasonable compromise.

Figure 6(b) shows the dependence of the inversion
results on the averaging interval for the case of
surface-area kernels. The dependence of the aver-
aged discrepancy p*® on p,,., becomes more oscilla-
tory, which complicates the choice of averaging
interval. For the data set considered here the par-
ticle parameters retrieved with the surface kernels
show a higher uncertainty compared with the results
shown in Fig. 6(a). However a clear preference of
volume kernel functions over surface-area kernel
functions is not given. In some cases surface-area
kernel functions gave better results than volume ker-
nel functions. A slight improvement of the inversion
is observed if both kernel types are used and corre-
sponding results are averaged.

Figure 7 shows the dependence of the real and
imaginary parts of the refractive index on the aver-
aging interval for the same data set shown in Fig. 6.
The results obtained with the surface-area and vol-
ume kernel functions are quite similar, i.e., m =
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Fig. 8. Effect of averaging of solutions on the basis of five base
functions. Shown is the solution corresponding to the minimum
discrepancy (dash—dot), the averaged solution (dashes), and the
initial bimodal distribution (solid curve). The data set is the same
as in Fig. 6. The dotted curves indicate the mean-square devia-
tion of the individual solutions used for the calculation of the
average value.

1.43 — 10.0125 for volume kernels and m = 1.44 —
10.0125 for surface-area kernels.

An overestimation of the complex refractive index,
if the solution at the minimum of the regularization
curve is taken, has been reported in previous studies
of a similar version of the inversion code presented
here.® Also in the present case we observe an over-
estimation of m corresponding to the minimum dis-
crepancy, but after averaging both, the real part as
well as the imaginary part of the refractive index
come rather close to the initial value of 1.45 — 0.01.

Figure 8 illustrates the effect of averaging solu-
tions on the retrieved shape of the size distribution.
Shown is the solution that corresponds to the mini-
mum of discrepancy, the averaged solution, and the
initial bimodal particle size distribution. The data
set used is the same as in Fig. 6. The dotted lines
indicate the mean-square deviation of the individual
solutions from the average value. The deviation is
calculated in the same way, as is described in Ref. 11.
The coarse mode of the solution, corresponding to the
minimum of discrepancy, significantly exceeds the
initial one, but the averaging procedure significantly
improves the reconstruction of the coarse mode.

As mentioned before, we considered different types
of kernel function as they might determine the sta-
bility of the inversion. In a previous paper!! that
dealt with monomodal particle size distributions, no
significant difference was found with respect to the
choice of different kernel functions. In the current
study number, surface-area, volume, fourth- (K,,)
and fifth- (K;5) order kernel functions were tested.
Simulations were performed for 33 + 2« data sets of
type II aerosol with 20% data error. Table 2 shows
the accuracy of the parameter estimation with differ-
ent kernel functions obtained during three program
runs.

There is a significant spread among the individual
solutions as can be seen from the result of three in-
dividual runs. As mentioned before, the inversion

Table 2. Errors of Estimation of Aerosol Total Number (N,), Surface
(S;), Volume (V;) Concentration, and Effective Radius (ro¢)*

Kernel

Types N, (%) S, (%) Togr (%)

NK 15 35 60 15 10 10 25 30 20 35 20 35
SK 30 70 30 15 35 10 20 35 40 30 50 45
VK 50 100 40 30 35 10 20 30 30 35 50 10
K-4 140 160 120 50 60 30 10 30 25 40 55 15
K-5 200 210 180 60 75 50 10 55 15 50 75 40

V, (%)

“Results obtained with number (NK), surface area (SK), volume
(VK), fourth-(K-4), and fifth-(K-5) order kernels for three different
program runs. Error of the 33 + 2a data set was 20%.

results depend strongly on the error distribution be-
tween the optical coefficients and this should be kept
in mind when discussing the dependence of parame-
ter uncertainties on different kernel types. Another
important result, as already mentioned in the discus-
sion of Figs. 6 and 7, is that different parameters are
retrieved best at different values of p,,., and the
choice of the averaging interval is always the com-
promise of uncertainties of these parameters relative
to each other. Usually the best estimations of num-
ber concentration are obtained with low-order ker-
nels (number or surface area) and the best estimates
of volume are obtained with volume and fourth-order
kernels. Fifth-order kernels usually already lead to
the degradation of accuracy.

The solutions corresponding to the minimum of
discrepancy obtained with number density kernels
differ strongly from the initial value and are more
oscillatory. After averaging the accuracy of param-
eter estimation with number kernels becomes com-
parable with the results obtained for surface and
volume kernels, although the size distribution itself
is reproduced less well. Moreover, the results ob-
tained with number kernels are more sensitive to the
choice of the averaging interval, thus leading to ad-
ditional uncertainty. For that reason we do not con-
sider number kernels to be attractive for routine data
processing. The best compromise is achieved with
the use of surface or volume kernels. The parameter
estimation improves when the mean of the values
obtained with surface and volume kernels, respec-
tively, is taken. This averaging of kernels should be
further investigated, so that it might become part of
data retrieval strategy in a future version of the code.
The complex refractive indices calculated with differ-
ent kernels are quite close. The deviation of mp
from the initial value did not exceed *=0.05, and the
deviation of m; did not exceed 50%.

Figure 9 shows the particle size distributions ob-
tained with the five different kernel functions used in
this study and for 20% data error. The general ten-
dency is the increase of the mean radius r, of the
coarse mode with the rise of the order of the kernel
functions. In the present example the kernels of
higher order improve the reproduction of the coarse
mode, whereas the reproduction of the fine mode de-
grades. Other program runs showed that the evo-
lution of the particle size distribution, depending on
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Fig. 9. Volume concentration distribution retrieved with number
(NK), surface area (SK), volume (VK), fourth- (K-4) and fifth- (K-5)
order kernel functions. The solid curve represents the initial bi-
modal distribution. The error of the data set is 20%.

the rise in kernel order, is not necessarily as smooth
as shown in Fig. 9. In general surface-area and vol-
ume kernels again are best suited as they permit a
reasonable compromise in the reproduction of fine
and coarse modes.

3. Dependence on Number of Base Functions
Another test dealt with the stability of the inversion
depending on the number of base functions. Tests
showed that base functions distributed along a loga-
rithmic radius range always lead to better retrieval
results compared with base functions spread along a
linear radius range. Therefore the following simu-
lations are based on the use of the logarithmic radius
range.

Figure 10 shows the results of the retrieval of vol-
ume concentration distributions duv(r)/dInr of type II
aerosols for 5, 8, and 12 base functions on the basis of
data sets of 3B + 2a. The retrieval was performed
with volume kernel functions. The complex refrac-
tive index m = 1.45 — {0.01 was assumed unknown.
The solutions obtained were averaged as described in

0.007 L £ 1

0.006

0.005 4

0.004

0.003 -

0.002 4

dvidinr (um°cm’®)

0.001 4

6.000

-0.001
radius (um)

Fig. 10. Size distribution retrieved with different numbers of
base functions: 5 (dash—dot), 8 (dash), and 12 (dot). Solid curve
represents the initial size distribution. Volume kernels were
used. The data set consisted of 38 + 2a with a 10% error. The
complex refractive index was assumed unknown during inversion.
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Subsection 3.B.2. The averaging interval was opti-
mized for each number of base functions, thus allow-
ing this comparison. In the case of error-free optical
data, for which the results for the different number of
base functions did not differ significantly, the re-
trieved size distributions were close to the initial size
distribution. Differences became obvious after er-
rors, in this case 10%, were introduced. Figure 10
shows that the increase of the number N, of base
functions does not improve the accuracy. The best
results were obtained for a number of base functions
equal to the number of optical data. For N,,= 5, the
accuracy of V,, S,, and N, is 12%, 20%, and 52%,
respectively. The accuracies of the same parame-
ters for N, = 8 are 13%, 32%, and 110%. N,,= 12
gives accuracies of 18%, 45%, and 150%. Simulation
for type I aerosols leads to a similar conclusion, i.e.,
the number of base functions should be equal to the
number of optical data. The result of keeping N,,
low and yet obtaining smooth particle size distribu-
tions can be explained in two ways: It is quite ob-
vious that a low number of base function presents a
rather strong constraint on the solution finding, i.e.,
the lower the number of base functions the lower the
degrees of freedom in the inversion. Second, a low
number of base functions can only give a crude reso-
lution of the shape of the particle size distribution.
This effect, however, is compensated for by averaging
many solutions in the vicinity of the minimum dis-
crepancy, which leads to the smoothing of the mean
solution.

4. Method Accuracy

Errors in the optical data set were introduced in a
random way. For a realistic estimation of the
method uncertainty we performed the procedure ten
times for each type of aerosol. The maximum ob-
served error was considered as the method accuracy.
The simulations were performed with surface-area
and volume kernels, and the mean values of the pa-
rameters obtained in this way were taken. Table 3
summarizes the results for the 38 + 2« data sets and
10% optical data errors. Type II aerosols are char-
acterized by higher errors in volume concentration
and effective radius compared with the results for
type I aerosols. These results can be explained by
the fact that the main part of the volume of type II
aerosols is contained in the coarse mode. The re-
trieval of the coarse mode however is less stable com-
pared with the retrieval of the fine mode. In
contrast, uncertainties of number and surface-area
concentration are smaller for type II aerosols. Tak-
ing the mean value of the results obtained with two
types of kernel leads to some improvement of the
parameter estimation, which is especially noticeable
for the calculation of N,. If no a priori information
on the aerosol type is available, the inversion of ex-
perimental lidar data would therefore have to be as-
sumed to be as large as €y, = 70%, €5, = 40%, &y, =
45% and €, = 40%. The accuracy of the complex
refractive index did not depend significantly on the
kernel type. For the real part mp the uncertainty



Table 3. Uncertainties of Parameter Estimations from 33 + 2« Data Sets for Type | and Type Il Aerosols®

S N, (%) S; (%) V. (%) Tosr (%)

1Ze

Distribution VK~ VK+SK VK VK+SK VK VK+SK VK VK+SK mg my (%)
Type 1 90 70 50 40 25 25 40 40 +0.05 50
Type 11 60 40 17 15 45 45 55 40 +0.05 50

“Errors of optical data are 10%.
area kernels (VK + SK).

always was within +0.05. The uncertainty of m; did
not exceed 50%.

Figure 11 illustrates the scattering with respect to
the shape of the particle size distributions obtained
from ten program runs for type I and type II aerosols,
respectively. The data set was 33 + 2«, and the
uncertainty was set to 10%. The oscillations of the
solutions at big radii determine the limit of detecting
the coarse mode. For type II particle size distribu-
tions the parameters of the coarse mode (ry,, 05) can
be estimated. For type I aerosols the scattering of
the solutions is strong and does not allow for a good
reconstruction of the coarse mode.

As mentioned in Section 2 the method of finding
the averaging interval was modified from the tech-
nique used for the retrieval of monomodal particle
size distributions.’* Figure 12 shows that this mod-
ified approach of solution finding also works well for
monomodal size distribution, i.e., when the coarse
mode is absent. Simulations were performed for the
same parameters as used in Fig. 11.
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Fig. 11. Uncertainty of size distributions for ten runs of (a) type
I and (b) type II aerosol retrieval. The 3B + 2a optical data were
inverted with volume kernels and had a 10% error.

Table shows results for volume kernels (VK) and mean of values obtained with volume and surface

The retrieval of the complex refractive index be-
comes difficult for big particles, that is, for radii above
~2 pm, because the backscatter coefficients for dif-
ferent refractive indices become rather similar, as
can be seen from Fig. 2. To study the retrieval un-
certainties for such big radii we performed simula-
tions for a size distribution with parameters of the
coarse mode of 7.” = 5.3 pm and Ino, = 0.6. The fine
mode was kept the same as for type II aerosol. The
effective radius of such a distribution is approxi-
mately 2.25 pm. The results of the retrieval for a
3B + 2a set with volume kernels are presented in Fig.
13. The simulation was carried out for m = 1.35 —
10, which describes the case of aerosols with a com-
parably high concentration of water or the case of
pure water clouds. For the aerosol size distribution
considered here, the backscatter coefficients at 532
and 1064 nm differ by less than 5%, so even in the
absence of optical data error the uncertainties of the
retrieved parameters are significant. The retrieved
refractive index is m = 1.44 — i0 and is thus higher
than the initial one. The uncertainties of N,, S,, V,,
and r. are 29%, 15%, 34%, and 27%, respectively.
Introducing 10% optical data errors increases the un-
certainties even more. For the present example the
uncertainties are 51%, 15%, 57%, and 51%, and the
retrieved refractive index is 1.51 — 0.

The precision of inversion is improved if the refrac-
tive index corresponding to water is assumed. For
known m and the same data set with 10% error the
uncertainties become 68%, 14%, 14%, and 24%,
which significantly improves the accuracy of the re-
trieved coarse particle mode.
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Fig. 12. Same as Fig. 11 but for a monomodal particle size dis-
tribution.
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Fig. 13. Volume size distributions for the refractive indices of
m = 1.35 — i0 (dot, dash, dash—dot—dot) and m = 1.35 — {0.02
(dash—dot, short dash), and the use of volume kernels. Simula-
tions were done for the case of error-free data (dash—dot, dash),
and data errors of 10% (short dash, dot, dash—dot—dot) for a 38 +
2a data set. The solid curve represents the initial bimodal par-
ticle size distribution. The dash—dot—dot curve represents the
result for a data error of 10% and a known refractive index of m =
1.35 — i0.

It is interesting that the accuracy improves if the
imaginary part of the refractive index is increased.
This result might be anticipated from calculations
presented in Fig. 1, showing that for m; = 0.02 the
backscattering at 532 and 1064 nm for big radii be-
comes different. For m = 1.35 — i0.02 and in the
absence of data errors, the retrieved distribution
practically coincides with the initial size distribution,
and the retrieved refractive index is 1.36 — 70.02.
Even for a data error of 10%, the retrieval is stable,
the uncertainties of N,, S,, V,, and r are 52%, 16%,
7%, and 10%, respectively, and m = 1.37 — i0.02.
The main criterion, that the retrieval is still credible,
is the ratio |Bs32 — B1oeal/Bs32, Which has to be larger
than 10% if the measurement error is of that order of
magnitude.

5. Size Dependence of the Complex Refractive
Index

The simulations presented so far assumed that fine
and coarse modes have the same complex refractive
index, although in reality these might differ. This
effect is more significant for type II aerosols, in which
the coarse mode contributes strongly to the total scat-
tering. Only a few studies on size-dependent com-
plex refractive indices of bimodal distributions have
been made so far.® These studies focused on char-
acterizing the stability of the inversion code for var-
ious situations of a size-dependent complex refractive
index. In the study presented here we present for
the first time to our knowledge a quantitative evalu-
ation of the properties of the inversion code for size-
dependent complex refractive indices.

Figure 14 illustrates the influence of a size-
dependent refractive index on the retrieved particle
size distribution. Shown are size distributions ob-
tained from an error-free 38 + 2a data set and dif-
ferent combinations of m,and m,. For m,= 1.55 —
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Fig. 14. Retrieval of size distribution with different refractive
indices in the fine (m;) and the coarse (m,) modes. For inversion
of the 38 + 2« data set volume kernel functions were used. Op-
tical data were error free. The solid curve represents the initial
size distribution.

10 and m, = 1.35 — 0 the coarse mode of the retrieved
particle size distribution is shifted to large radii.
This shift becomes even stronger when we increase
the imaginary part of m,from 0 to 0.02. In the case
of m, > mgie, m,= 135 —i0 and m, = 1.55 — i0,
the retrieved particle size distribution is shifted to
smaller radii.

To estimate the uncertainty introduced by size-
dependent refractive indices we performed simula-
tions for type II aerosols using 33 + 2« data sets with
10% errors. Calculations were performed for two
combinations of m,and m,.. In the first case we used
m,= 155 —i0.01 and m, = 1.35 —i0. In the second
case we used m, = 1.35 — i0 and m, = 1.55 — 70.01.
The refractive index of the absorbing component can
be interpreted as moderately absorbing anthropo-
genic aerosol, whereas the nonabsorbing component
can be interpreted as particles of marine origin. For
each combination the program was run ten times and
the worst-case situation was taken as quality crite-
rion, i.e., the maximum uncertainty obtained for each
parameter from the twenty runs, respectively, was
considered as the final accuracy. The uncertainties
of ro, N,, S,;, and V, are 55%, 60%, 30%, and 50%,
respectively. In general these errors do not exceed
the errors listed in Table 3, except for S,, which in-
creased from 17% to 30%.

Figure 15 illustrates the scattering of the shape of
the particle size distribution obtained from the ten
program runs. Shown is the result for m, = 1.55 —
10.01 and m, = 1.35 — i{0. The mean radii of the
retrieved coarse modes are shifted to bigger radii
compared with the given one. The amplitude of the
coarse mode shows large variations. In summary
we can conclude that even in the case of bimodal
particle size distribution consisting of different com-
plex refractive indices and 10% data error there is
reasonable parameter estimation.

4. Measurement Example

The simulations described above dealt with the de-
tection of large particles in bimodal particle size dis-
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Fig. 15. Retrieval of the size distribution for m, = 1.55 — i0.01
and m, = 1.35 — i0. The optical data errors were 10%. Dotted
curves represent the scattering of solutions obtained in ten pro-
gram runs. For inversion of the 38 + 2a data set volume kernel
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distribution.

tributions. The algorithm therefore was further
tested for two experimental data sets describing the
presence of large particles. The data were taken
from a measurement carried out during the INDOEX
(Ramanathan et al., 2001).3° Table 4 shows the
spectra of the backscatter coefficients and extinction
coefficients used in this study. The measurement
example represents anthropogenic pollution ob-
served on 7 March 1999, when air was advected to the
field site from Southeast Asia. Details of this mea-
surement can be found in Refs. 3 and 31.

The measurements were done with the ITR six-
wavelength lidar.’3 The system emits laser pulses
at 355, 400, 532, 710, 800, and 1064 nm. For the
aerosol retrieval presented here we used the back-
scattered light detected at the laser wavelengths and
the Raman signals of nitrogen at 387 nm (355-nm
primary wavelength) and 607 nm (532-nm primary
wavelength). The two nitrogen Raman signals at
387 and 607 nm were used for the computation of
profiles of the particle extinction coefficients at 355
and 532 nm.32-34¢ The elastic backscatter signals
and the corresponding signals from Raman scatter-
ing by nitrogen molecules were used for the retrieval
of profiles of the backscatter coefficients at 355 and
532 nm with the Raman-lidar method.333¢ The par-
ticle backscatter coefficients at 400, 710, 800, and
1064 nm were calculated with the so-called Klett

method3? from the elastic backscatter signals by use
of variable lidar ratios obtained at 355 and 532 nm
with the Raman method.

Two height ranges are considered in the analysis.
In the height range from approximately 600—-1000 m
trade cumulus clouds were observed. In contrast,
the height range from 1325 to 1650 m was cloud free.
The data used here were cloud screened, thus leaving
only the information on the pure particle signal.
However, because of the high relative humidity, in
particular at the height range at which clouds were
observed, it is most likely that a portion of the signal
in the lower height range is still affected by traces of
droplets, or that the observed particles contained a
large fraction of water as the result of hygroscopic
growth. For that reason it is most likely that next to
the fine particle mode, originating from small anthro-
pogenic particles, a second coarse mode was present
in the particle size distribution.

The numbers were derived on the basis of data set
6B + 2a, and once more for the reduced data set 338 +
2a. Table 4 shows that two different values for the
particle backscatter coefficient at 1064 nm were used.
The different values take particular account of the
comparably large uncertainty, which is involved in
the retrieval of this parameter. The inversion re-
sults for 600-1000- and 1325-1650-m layers are
given in Tables 5 and 6 respectively. For the anal-
ysis we used both values for the backscatter coeffi-
cient at 1064 nm.

The inversion of the 6 + 2a data set yields an
effective radius of 0.34 = 0.13 wm. Consideration of
the lower value for B,¢g4 reduces the effective radius
to as low as 0.29 pum. Inversion of the reduced data
set of 3B + 2« does not significantly change the re-
sult. Because of the uncertainty of the particle
backscatter coefficient at 1064, the mean value of
volume concentration varies between 52 and 74 pm?
cm 3. In contrast, the complex refractive index is
not affected by this error source.

With respect to the upper height layer we find a
significantly lower effective radius of 0.19-0.24 pm.
Particle volume and surface-area concentration are
lower by 50% and 20%, respectively. The complex
refractive index remains rather unchanged. As in
the case of the lower height range, we do not find
significant differences for the retrieved parameters

Table 4. Optical Data for Two Measurement Cases Taken from INDOEX

Height Range

600-1000 m 1325-1650 m
Wavelength

(nm) o, km™?! B, km !sr?! o, km™! B,km !sr?
355 0.394 0.00592 0.233 0.00332
400 0.00503 0.00292
532 0.274 0.00339 0.133 0.00192
710 0.0028 0.00169
800 0.0026 0.0016

1064 0.00214 [0.00145] 0.000869 [0.00144]
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Table 5. Particle Parameters for a 600-1000-m Layer Retrieved from 6B + 2« and 3 + 2« Data Sets by Use of Volume Kernels®

Retrieved Parameters

6B + 2

3B + 2a

Foge () 0.34 = 0.13[0.29 + 0.12] 0.32 = 0.12[0.26 + 0.1]

N, (em™3) 2500 = 1700 [2800 = 1900] 2000 + 1400 [2100 *+ 1400]
S, (wm? cm™3) 680 = 270 [680 = 270] 670 = 270 [610 = 240]

V, (um? cm™?) 74 + 30 [65 =+ 30] 67 * 30 [52 = 20]

mg 1.4 £ 0.05[1.4 = 0.05] 1.4 £ 0.05[1.4 = 0.05]

my 0.007 = 0.0035 [0.006 = 0.003] 0.006 =+ 0.003 [0.006 = 0.003]

2Values in brackets are obtained from the data set with backscatter at 1064 nm changed for B;ps, = 0.00145 km ™! sr™ 1.

from the reduced data set 38 + 2a. Some of the
variability of the parameters between the two height
layers might be attributed to the influence of the
clouds in the lower height range.

This result can be compared with the findings pre-
sented in Ref. 3. In that analysis mainly the lower
value of B;yg4 Was considered. An effective radius of
approximately 0.22 pm was found for both height
ranges. Volume concentration varied around 44 =+
3.4 pum® cm 3, and surface-area concentration was as
high as 610 + 50 um? cm 3. These numbers agree
reasonably well with the results based on the use of
the lower value of ;464 presented here. Acceptable
agreement is also given for the complex refractive
index. The real part of 1.35-1.39 reported in Ref. 3
is slightly lower than the values reported here. The
imaginary part varies between 0.002; and 0.006:.

The value for effective radius for the measurement
presented here is at the upper end of effective radii
found for anthropogenic pollution from six-
wavelength lidar observations in this area.336 As
mentioned before, broken clouds were found around
1000-m height. Next to the presence of cloud drop-
lets and large particles caused by hygroscopic
growths it is also reasonable to assume the presence
of large marine particles injected from the marine
boundary layer.

The assumption that water and/or sea salt contrib-
uted is supported by the value of the complex refrac-
tive index. The real part of 1.4 = 0.05 indicates a
mixture of anthropogenic pollution with water and
sea-salt particles. The imaginary part of approxi-
mately 0.007 points to moderately absorbing parti-
cles. The contribution by nonabsorbing marine
particles and water droplets could have led to these
low values of the imaginary part. We emphasize
that the six-wavelength lidar observations during the
INDOEX showed that particles advected from South-

east Asia to the Maldives were rather low absorbing
in themselves,331 resembling the absorption charac-
teristics of aged European anthropogenic pollution
observed with the six-wavelength lidar during the
ACE 23739 ACE-2 was carried out in the North
Atlantic/Portugal in June/July 1997.40

Figure 16(a) shows the retrieved size distribution
for the lower height. It shows that the observed
particles correspond to type I aerosol. The size dis-
tributions obtained from the 6B + 2« and 3B + 2«
data sets are similar. Quite obviously there is a
strong anthropogenic mode below 0.4 um in the par-
ticle radius and two modes at larger particle sizes.
The one between 1 and 10 pm clearly represents the
coarse mode. One has to keep in mind that the un-
certainty of B,064 has a significant influence on the
presence of this coarse mode. In that respect the
two clearly separable particle modes above approxi-
mately 0.4 mm have to be considered with some cau-
tion.

For comparison Fig. 16(b) shows the particle size
distribution for the upper height layer. Obviously
the coarse mode is not as pronounced as in Fig. 16(a).
Again the influence of 3144 on the appearance of the
particle size distribution is rather strong. It should
be noted that the estimation of cloud droplet radii
might also be performed with a Raman signal from
water in a liquid state.4? The comparison of these
two methods is the plan for our future research.

5. Conclusion

We have presented a study on the retrieval of large
particles in bimodal aerosol size distributions from
multiwavelength lidar observations. The applied
technique is Tikhonov’s inversion with regulariza-
tion. The studies focused mainly on the inversion of
a combined data set of particle backscatter coeffi-
cients at 355, 532, and 1064 nm and extinction coef-

Table 6. Particle Parameters for a 1325-1650-m Layer Retrieved from 6B + 2« and 3 + 2« Data Sets by Use of Volume Kernels®

Retrieved Parameters

6B + 2«

3B + 2«

Togr (L)

N, (em™)

S, (wm? cm™3)
V, (pm?® cm ™)

0.19 + 0.08 [0.24 = 0.1]
3900 + 2700 [4800 + 3300]
560 = 220 [480 + 190]
34 = 15[38 = 15]
mp 1.42 = 0.05[1.43 + 0.05]
m, 0.007 = 0.0035 [0.07 = 0.0035]

0.2 = 0.08[0.26 * 0.1]
2700 + 1900 [2200 + 1500]
490 + 190 [450 + 180]
31 + 14 [39 + 17]
1.4 + 0.05[1.43 = 0.05]
0.005 * 0.0025 [0.007 = 0.0035]

“Values in brackets are obtained from data set with backscatter at 1064 nm changed for B, = 0.00144 km ™! sr™ 1.

1192 APPLIED OPTICS / Vol. 43, No. 5 / 10 February 2004



L

€

mo

£

=

£

]

54

©

6 1 1

\ (b)
;

5 y -
4 B =144"10%m’'sr" | |
=
]
£
k=)
= 24 L
=
o

14 L

PP N g ~\

o4 ' P, =08710 kem'sr : e YN |

0.1 1 10
radius (um)
Fig. 16. Volume size distribution at (a) 600-1000-m and (b)
1325-1650-m layers retrieved from 63 + 2« (solid, dash—dot) and
3B + 2a (dash, dot) data sets by use of volume density kernels.
The results were obtained for high (solid, dash) and low (dash—dot,
dot) values of ;g4

ficients at 355 and 532 nm. This data set is the
minimum information needed for reliable retrieval of
microphysical particle properties, i.e., effective ra-
dius, number, surface area, volume concentration,
and complex refractive index. In principle such a
data set can be provided by a multitude of aerosol
lidar systems that operate on the basis of one Nd:
YAG laser.

The inversion code had been modified from the pre-
vious version.'* The use of data banks for Mie effi-
ciencies and matrix elements used in the inversion
allowed us to speed up the computation and to take
into consideration particles with radii up to 20 pm.
Compared with the previous code,!! the accuracy of
the inversion results was further optimized by a mod-
ification of the discrepancy principle that is used as
the regularization element in the inversion. One of
the advantages of this regularization approach is that
knowledge of the measurement errors is not required.
Depending on which microphysical parameter is re-
trieved a different set of kernel functions, i.e., num-
ber, surface area, volume, and fourth-order kernel
functions, might provide somewhat better results.
In that sense the stability and accuracy of the inver-
sion is even further stabilized.

Studies dealt with the accuracy of the retrieved
particle parameters and the ability of detecting the

bimodal character of the size distributions. The bi-
modal structure was recognized by the inversion code
in each case considered. Often there was a shift of
the large mode toward larger particle sizes compared
with the initially given mode. This shift also de-
pends on the contribution of the coarse mode to the
optical signal. In the worst case, the effective ra-
dius, number, surface area, and volume concentra-
tion were retrieved with an accuracy of 40%, 70%,
40%, and 45%, respectively. The real part of the
complex refractive index could be retrieved to an ac-
curacy of £0.05. The accuracy of the imaginary part
was always better than 50%.

The above numbers refer to size-independent com-
plex refractive indices. Detailed studies were also
done for cases in which each of the two modes had a
different refractive index. These situations are par-
ticularly important as they describe external mix-
tures of aerosols. Under these conditions the
effective radius, number, surface area, and volume
concentration were retrieved with an average accu-
racy of 55%, 70%, 40%, and 50%, respectively.

For size distributions with an effective radius ex-
ceeding 2 pm, retrieval of the complex refractive in-
dex becomes difficult, because the kernel functions at
big radii are not sensitive to variations in the real
part. As a result, the retrieved real part is usually
overestimated, whereas the effective radius and con-
centration are underestimated. This effect limits
the retrieval of parameters of large particles. The
situation could be somewhat improved if the particle
refractive index were known, as, for example, in the
case of aerosols with a large water content. From
numerous simulations we conclude that the retrieval
is still credible, if the ratio |B532 — B1os4l/Bssz is larger
than the measurement error, which is approximately
10% in our case.

In the evaluation of the achieved accuracy of pa-
rameter retrieval presented in this paper we should
keep in mind that only five years ago, before the
implementation of new inversion techniques within
the frame of development of Mie—-Raman lidars at
ITR, we could estimate only the order of magnitude
of, e.g., the effective radius from tropospheric lidar
observations. In that respect an accuracy of ~50%
presents significant progress, which becomes even
more valuable as this number holds not only for the
simple case of monomodal particle size distribu-
tions,%11 but also for the more difficult case of bimodal
size distributions. It allows estimating particle pa-
rameters presented in this study with an uncertainty
lower than their respective natural variations de-
scribed in Ref. 21, which is important in climate mod-
eling. It should be noted that in existing models the
tropospheric aerosol parameters are usually consid-
ered as height-independent quantities, which does
not allow realistic simulations of, e.g., the aerosol
indirect effect. The possibility to use the vertical
distribution of aerosol parameters obtained from li-
dar measurements even with existing accuracy would
be a significant improvement of such modeling. In
that respect special interest lies in the continuation of
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existing lidar networks such as EARLINET or the
setup of new lidar networks in other regions of the
world, or the development of airborne multiwave-
length lidar, which would allow production of the
global information of aerosol parameters.

Most of the studies presented here dealt with mea-
surement errors of the order of 10%, which is the
maximum accuracy that can be expected from
Raman—Mie lidar systems. It should also be ob-
served that atmospheric variability in that respect
plays a key role under experimental conditions. Be-
cause the inversion code was extended toward deal-
ing with large particles, e.g.,, large particles
stemming from hygroscopic growth, we chose a mea-
surement example of anthropogenic pollution be-
tween a broken cloud deck. The measurement was
carried out during the INDOEX with the ITR six-
wavelength aerosol lidar. In the lower height range
of the pollution layer considered here we observed a
strong coarse mode in the derived particle size dis-
tributions. This coarse mode might be the result of
a large marine particle injected from the surface
and/or hygroscopic growth of some of the particles as
the result of high relative humidity. In the height
range above the cloud deck we found smaller parti-
cles. Volume and surface-area concentration also
were significantly lower. The real part of the com-
plex refractive index of 1.4 was rather low in both
height ranges. The imaginary part showed moder-
ate absorption. These numbers also indicate the
presence of large nonabsorbing marine particles
and/or cloud droplets.
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